Selasa, 24 April 2012

BIOINFORMATIKA

Pembahasan kali ini saya kan memposting mengenai bioinformatika. Penjelasan mengenai bioinformatika ini akan menjelaskan mengenai apa bioinformatika, sejarah sampai perkembangan bioinformatika di Indonesia.
Yuukkk mari kita melihat pembahasan ini. :) :)



Apa itu bioinfromatika?

Bioinformatika, sesuai dengan asal katanya yaitu “bio” dan “informatika”, adalah gabungan antara ilmu biologi dan ilmu teknik informasi (TI). Pada umumnya, Bioinformatika didefenisikan sebagai aplikasi dari alat komputasi dan analisa untuk menangkap dan menginterpretasikan data-data biologi. Ilmu ini merupakan ilmu baru yang yang merangkup berbagai disiplin ilmu termasuk ilmu komputer, matematika dan fisika, biologi, dan ilmu kedokteran, dimana kesemuanya saling menunjang dan saling bermanfaat satu sama lainnya.
Bioinformatika ialah ilmu yang mempelajari penerapan teknik komputasi untuk mengelola dan menganalisis informasi hayati. Bidang ini mencakup penerapan metode-metode matematika, statistika, dan informatika untuk memecahkan masalah-masalah biologi, terutama yang terkait dengan penggunaan sekuens DNA dan asam amino. Contoh topik utama bidang ini meliputi pangkalan data untuk mengelola informasi hayati, penyejajaran sekuens (sequence alignment), prediksi struktur untuk meramalkan struktur protein atau pun struktur sekunder RNA, analisis filogenetik, dan analisis ekspresi gen.

SEJARAH

Bioinformatika pertama kali dikemukakan pada pertengahan 1980an untuk mengacu kepada penerapan ilmu komputer dalam bidang biologi. Meskipun demikian, penerapan bidang-bidang dalam bioinformatika seperti pembuatan pangkalan data dan pengembangan algoritma untuk analisis sekuens biologi telah dilakukan sejak tahun 1960an.
Kemajuan teknik biologi molekuler dalam mengungkap sekuens biologi protein (sejak awal 1950an) dan asam nukleat (sejak 1960an) mengawali perkembangan pangkalan data dan teknik analisis sekuens biologi. Pangkalan data sekuens protein mulai dikembangkan pada tahun 1960an di Amerika Serikat, sementara pangkalan data sekuens DNA dikembangkan pada akhir 1970an di Amerika Serikat dan Jerman pada Laboratorium Biologi Molekuler Eropa (European Molecular Biology Laboratory).
Penemuan teknik sekuensing DNA yang lebih cepat pada pertengahan 1970an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang dapat diungkapkan pada 1980an dan 1990an. Hal ini menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, yang meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika.
Perkembangan jaringan internet juga mendukung berkembangnya bioinformatika. Pangkalan data bioinformatika yang terhubungkan melalui internet memudahkan ilmuwan dalam mengumpulkan hasil sekuensing ke dalam pangkalan data tersebut serta memperoleh sekuens biologi sebagai bahan analisis. Selain itu, penyebaran program-program aplikasi bioinformatika melalui internet memudahkan ilmuwan dalam mengakses program-program tersebut dan kemudian memudahkan pengembangannya.


CABANG-CABANG YANG TERKAIT DENGAN BIOINFORMATIKA

Dari pengertian Bioinformatika yang telah dijelaskan, kita dapat menemukan banyak terdapat banyak cabang-cabang disiplin ilmu yang terkait dengan Bioinformatika, terutama karena bioinformatika itu sendiri merupakan suatu bidang interdisipliner. Hal tersebut menimbulkan banyak pilihan bagi orang yang ingin mendalami Bioinformatika.


Biophysics
Biophysics adalah sebuah bidang interdisipliner yang mengalikasikan teknik-teknik dari ilmu Fisika untuk memahami struktur dan fungsi biologi (British Biophysical Society). Disiplin ilmu ini terkait dengan Bioinformatika karena penggunaan teknik-teknik dari ilmu Fisika untuk memahami struktur membutuhkan penggunaan TI.

Computational Biology
Computational biology merupakan bagian dari Bioinformatika (dalam arti yang paling luas) yang paling dekat dengan bidang Biologi umum klasik. Fokus dari computational biology adalah gerak evolusi, populasi, dan biologi teoritis daripada biomedis dalam molekul dan sel.

Medical Informatics
Menurut Aamir Zakaria [ZAKARIA2004] Pengertian dari medical informatics adalah “sebuah disiplin ilmu yang baru yang didefinisikan sebagai pembelajaran, penemuan, dan implementasi dari struktur dan algoritma untuk meningkatkan komunikasi, pengertian dan manajemen informasi medis.” Medical informatics lebih memperhatikan struktur dan algoritma untuk pengolahan data medis, dibandingkan dengan data itu sendiri. Disiplin ilmu ini, untuk alasan praktis, kemungkinan besar berkaitan dengan data-data yang didapatkan pada level biologi yang lebih “rumit”.

Cheminformatics
Cheminformatics adalah kombinasi dari sintesis kimia, penyaringan biologis, dan pendekatan data-mining yang digunakan untuk penemuan dan pengembangan obat (Cambridge Healthech Institute’s Sixth Annual Cheminformatics conference). Kemungkinan penggunaan TI untuk merencanakan secara cerdas dan dengan mengotomatiskan proses-proses yang terkait dengan sintesis kimiawi dari komponenkomponen pengobatan merupakan suatu prospek yang sangat menarik bagi ahli kimia dan ahli biokimia.

Genomics
Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom, kecuali dalam bentuk yang paling kasar. Genomics adalah setiap usaha untukmenganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih. Secara logis tentu saja mungkin untuk membandingkan genom-genom dengan membandingkan kurang lebih suatu himpunan bagian dari gen di dalam genom yang representatif.

Mathematical Biology
Mathematical biology juga menangani masalah-masalah biologi, namun metode yang digunakan untuk menangani masalah tersebut tidak perlu secara numerik dan tidak perlu diimplementasikan dalam software maupun hardware.
Menurut Alex Kasman [KASMAN2004] Secara umum mathematical biology melingkupi semua ketertarikan teoritis yang tidak perlu merupakan sesuatu yang beralgoritma, dan tidak perlu dalam bentuk molekul, dan tidak perlu berguna dalam menganalisis data yang terkumpul.

Proteomics
Istilah proteomics pertama kali digunakan untuk menggambarkan himpunan dari protein-protein yang tersusun (encoded) oleh genom. Michael J. Dunn [DUNN2004], mendefiniskan kata “proteome” sebagai: “The PROTEin complement of the genOME“. Dan mendefinisikan proteomics berkaitan dengan: “studi kuantitatif dan kualitatif dari ekspresi gen di level dari protein-protein fungsional itu sendiri”. Yaitu: “sebuah antarmuka antara biokimia protein dengan biologi molekul”.

Pharmacogenomics
Pharmacogenomics adalah aplikasi dari pendekatan genomik dan teknologi pada identifikasi dari target-target obat. Contohnya meliputi menjaring semua genom untuk penerima yang potensial dengan menggunakan cara Bioinformatika, atau dengan menyelidiki bentuk pola dari ekspresi gen di dalam baik patogen maupun induk selama terjadinya infeksi, atau maupun dengan memeriksa karakteristik pola-pola ekspresi yang ditemukan dalam tumor atau contoh dari pasien untuk kepentingan diagnosa (kemungkinan untuk mengejar target potensial terapi kanker).
Istilah pharmacogenomics digunakan lebih untuk urusan yang lebih “trivial” — tetapi dapat diargumentasikan lebih berguna– dari aplikasi pendekatan Bioinformatika pada pengkatalogan dan pemrosesan informasi yang berkaitan dengan ilmu Farmasi dan Genetika, untuk contohnya adalah pengumpulan informasi pasien dalam database.

Pharmacogenetics
Pharmacogenetics adalah bagian dari pharmacogenomics yang menggunakan metode genomik/Bioinformatika untuk mengidentifikasi hubungan-hubungan genomik, contohnya SNP (Single Nucleotide Polymorphisms), karakteristik dari profil respons pasien tertentu dan menggunakan informasi-informasi tersebut untuk memberitahu administrasi dan pengembangan terapi pengobatan.
Gambaran dari sebagian bidang-bidang yang terkait dengan Bioinformatika di atas memperlihatkan bahwa Bioinformatika mempunyai ruang lingkup yang sangat luas dan mempunyai peran yang sangat besar dalam bidangnya. Bahkan pada bidang pelayanan kesehatan Bioinformatika menimbulkan disiplin ilmu baru yang menyebabkan peningkatan pelayanan kesehatan.

PENGGUNAAN BIO INFORMATIKA DALAM BIDANG KLINIS


       1.      Bioinformatika dalam bidang klinis
Perananan Bioinformatika dalam bidang klinis ini sering juga disebut sebagai informatika klinis (clinical informatics). Aplikasi dari clinical informatics ini adalah berbentuk manajemen data-data klinis dari pasien melalui Electrical Medical Record (EMR) yang dikembangkan oleh Clement J. McDonald dari Indiana University School of Medicine pada tahun 1972. McDonald pertama kali mengaplikasikan EMR pada 33 orang pasien penyakit gula (diabetes). Sekarang EMR ini telah diaplikasikan pada berbagai penyakit. Data yang disimpan meliputi data analisa diagnosa laboratorium, hasil konsultasi dan saran, foto ronsen, ukuran detak jantung, dll. Dengan data ini dokter akan bisa menentukan obat yang sesuai dengan kondisi pasien tertentu. Lebih jauh lagi, dengan dibacanya genom manusia, akan memungkinkan untuk mengetahui penyakit genetik seseorang, sehingga personal care terhadap pasien menjadi lebih akurat.

Sampai saat ini telah diketahui beberapa gen yang berperan dalam penyakit tertentu besertaposisinya pada kromosom. Informasi ini tersedia dan bisa dilihat di home page National Center forBiotechnology Information (NCBI) pada seksi Online Mendelian in Man (OMIM). OMIM adalah search tool untuk gen manusia dan penyakit genetika. Selain berisikan informasi tentang lokasi gen suatu penyakit, OMIM ini juga menyediakan informasi tentang gejala dan penanganan penyakit tersebut beserta sifat genetikanya. Dengan demikian, dokter yang menemukan pasien yang membawa penyakit genetika tertentu bisa mempelajarinya secara detil dengan mengakses home page OMIM ini.

Sebagai salah satu contoh, jika kita ingin melihat tentang kanker payudara, kita tinggal masukankata-kata “breast cancer” dan setelah searching akan keluar berbagai jenis kanker payudara. Kalau kita ingin mengetahui lebih detil tetang salah satu diantaranya, kita tinggal klik dan akan mendapatkan informasi detil mengenai hal tersebut beserta posisi gen penyebabnya di dalam koromosom.

       2.      Bioinformatika untuk identifikasi agent penyakit baru
Bioinformatika juga menyediakan tool yang esensial untuk identifikasi agent penyakit yang belumdikenal penyebabnya. Banyak sekali contoh-contoh penyakit baru (emerging diseases) yang muncul dalam dekade ini, dan diantaranya yang masih hangat di telinga kita tentu saja SARS (Severe Acute Respiratory Syndrome). Pada awal munculnya penyakit ini, ada beberapa pendapat tentang penyebabnya. Dari gejala pengidap SARS, diperkirakan bahwa penyakit ini disebabkan oleh virus influenza karena gejalanya mirip dengan gejala pengidap influenza. Tetapi virus influenza tidak terisolasi dari pasien, sehingga dugaan ini salah. Selain itu juga diperkirakan bahwa penyakit ini disebabkan oleh bakteri Candidakarena bakteri ini terisolasi dari beberapa pasien. Tapi karena hanya terisolasi dari sebagian kecilpasien, perkiraan ini juga salah. Akhirnya ditemukan bahwa dari sebagian besar pasien SARS terisolasi virus corona yang jika dilihat dari morfologinya. Sekuen genom virus ini kemudian dibaca dan dari hasil analisa dikonfirmasikan bahwa penyebab SARS adalah virus corona yang telah berubah (mutasi) dari virus corona yang ada selama ini.

Dalam rentetan proses ini, Bioinformatika memegang peranan penting. Pertama pada prosespembacaan genom virus corona. Karena di database seperti GenBank, EMBL (European Molecular Biology Laboratory), dan DDBJ (DNA Data Bank of Japan) sudah tersedia data sekuen beberapa virus corona, yang bisa digunakan untuk men-design primer yang digunakan untuk amplifikasi DNA virus SARS ini. Software untuk mendesign primer juga tersedia, baik yang gratis yang bisa kita gunakan online maupun yang komersial yang berupa software. Diantara yang gratis adalah Webprimer yang disediakan oleh Stanford Genomic Resources, GeneWalker yang disediakan oleh Cybergene AB. Untuk yang komersial ada seperti Primer designer yang dikembangkan oleh Scientific & Education Software, dan pada software-software untuk analisa DNA lainnya sepertiSequencher (GeneCodes Corp.), SeqMan II(DNA STAR Inc.), Genetyx (GENETYX Corp.), DNASIS(HITACHI Software), dll.

Berikutnya Bioinformatika juga berperan dalam mencari kemiripan sekuen (homology alignment) virus yang didapatkan dengan virus lainnya. Dari hasil analisa virus SARS diketahui bahwa genom virus corona penyebab SARS berbeda dengan virus corona lainnya, sehingga virus ini dinamakan virus SARS (SARS-CoV). Perbedaan ini diketahui dengan menggunakan homolgy alignment dari sekuen virus SARS. Untuk keperluan ini tersedia beberapa tool. Diantaranya ada BLAST (Basic Local Alignment Search Tool) yang tersedia di NCBI, di EMBL, dan di DDBJ. itu juga ada FASTA yang dapat diakses di EMBL dan di DDBJ.Selanjutnya, Bioinformatika juga berfungsi untuk analisa posisi sejauh mana suatu virus berbeda dengan virus lainnya. Untuk analisa ini biasanya digunakan CLUSTAL W (software untuk multiplealignment dan tree making) yang dapat diakses di EMBL atau di DDBJ. Data yang telah dianalisa diekspresikan dengan software “Tree View” yang bisa didownload dengan gratis dari berbagai situs tersebut. Dengan menggunakan tool ini dianalisa beberapa protein virus SARS dan didapatkan hasilnya bahwa virus SARS berbeda dengan virus Corona lainnya.

      3.      Bioinformatika untuk diagnosa penyakit baru

Untuk penyakit baru diperlukan diagnosa yang akurat sehingga bisa dibedakan dengan penyakit lain.Diagnosa yang akurat ini sangat diperlukan untuk penanganan pasien seperti pemberian obat danperawatan yang tepat. Jika pasien terinfeksi virus influenza dengan panas tinggi, hanya akan sembuh jika diberi obat yang cocok untuk infeksi virus influenza. Sebaliknya, tidak akan sembuh kalau diberi obat untuk malaria. Karena itu, diagnosa yang tepat untuk suatu penyakit sangat diperlukan. Selain itu, diagnosa juga diperlukan untuk menentukan tingkat kematian (mortality) dari suatu agentpenyakit. Artinya, semakin tinggi angka kematian ini, semakin berbahaya agent tersebut. Angka ini dihitung dengan menghitung jumlah pasien yang meninggal (D) dibagi dengan jumlah total pasien pengidap penyakit tersebut (P) (=D/P). Pada kasus SARS, gejala yang muncul mirip dengan gejala flu, sehingga dari gejala saja tidak bisa dibedakan apakah dia mengidap SARS atau mengidap flu. Diagnosa ini penting karena akan menentukan tingkat keganasan suatu agent yang akan mempengaruhi kebijakan yang diambil terhadap penyakit tersebut.

Ada beberapa cara untuk diagnosa suatu penyakit. Diantaranya isolasi agent penyebab penyakit tersebut dan analisa morfologinya, deteksi antibodi yang dihasilkan dari infeksi dengan teknikenzyme-linked immunosorbent assay (ELISA), dan deteksi gen dari agent pembawa penyakit tersebut dengan Polymerase Chain Reaction (PCR). Isolasi agent pembawa penyakit memerlukan waktu yang lama. Teknik ELISA bisa dilakukan dalam waktu yang pendek, namun untuk tiap-tiap penyakit kita harus mengembangkan teknik tersebut terlebih dahulu. Untuk pengembangannya ini memerlukan waktu yang lama.

Yang banyak dan lazim dipakai saat ini adalah teknik PCR. Teknik ini simpel, praktis dan cepat.Yang penting dalam teknik PCR adalah design primer untuk amplifikasi DNA. Untuk mendesign primer ini diperlukan data sekuen dari genom agent yang bersangkutan dan software seperti yang telah diuraikan di atas. Di sinilah Bioinformatika memainkan peranannya. Untuk agent yang mempunyai genom RNA, harus dilakukan reverse transcription (proses sintesa DNA dari RNA) terlebih dahulu dengan menggunakan enzim Reverse transcriptase. Setelah DNA diperoleh baru dilakukan PCR. Dua step reverse transcription dan PCR ini bisa dilakukan sekaligus dan biasanya dinamakan RT-PCR. Karena PCR ini hanya bersifat kualitatif, sejak beberapa tahun yang lalu telah dikembangkan teknikReal Time PCR yang bersifat kuantitatif. Dari hasil Real Time PCR ini bisa ditentukan kuantitas suatuagent di dalam tubuh seseorang, sehingga bisa dievaluasi tingkat emergensinya.

Pada RealTime PCR ini selain primer diperlukan probe yang harus didesign sesuai dengan sekuenagent yang bersangkutan. Di sini juga diperlukan software atau program Bioinformatika. Untuk penyakit SARS sendiri sekarang telah tersedia kit RT-PCR yang dikembangkan oleh Takara Bio Inc., dengan nama komersial CycleaveRT-PCR SARS virus Detection Kit. Selain itu Roche Diagnostics juga juga tengah mengembangkan kit untuk deteksi virus SARS. Keberhasilan pengembangan kit ini tidak terlepas dari didorong kemajuan Bioinformatika.

      4.      Bioinformatika untuk penemuan obat

Usaha penemuan obat biasanya dilakukan dengan penemuan zat/senyawa yang bisa menekanperkembangbiakan suatu agent penyebab penyakit. Karena banyak faktor yang bisa mempengaruhi perkembangbiakan agent tersebut, faktor-faktor itulah yang dijadikan target. Diantara faktor tersebut adalah enzim-enzim yang diperlukan untuk perkembangbiakan suatuagent. Langkah pertama yang dilakukan adalah analisa struktur dan fungsi enzim-enzim tersebut. Kemudian mencari atau mensintesa zat/senyawa yang bisa menekan fungsi dari enzim-enzim tersebut. Penemuan obat yang efektif adalah penemuan senyawa yang berinteraksi dengan asam amino yang berperan untuk aktivitas (active site) dan untuk kestabilan enzim tersebut.

Karena itu analisa struktur dan fungsi enzim ini biasanya difokuskan pada analisa asam amino yangberperan untuk aktivitas (active site) dan untuk kestabilan enzim tersebut. Analisa ini dilakukan dengan cara mengganti asam amino tertentu dan menguji efeknya. Sebelum perkembanganBioinformatika, analisa penggantian asam amino ini dilakukan secara randomsehingga memakanwaktu yang lama. Dengan adanya Bioinformatika, data-data protein yang sudah dianalisa bebasdiakses oleh siapapun, baik data sekuen asam amino-nya seperti yang ada di SWISS-PROTmaupun struktur 3D-nya yang tersedia di Protein Data Bank(PDB).

Dengan database yang tersedia ini, enzim yang baru ditemukan bisa dibandingkan sekuen asam amino-nya, sehingga bisa diperkirakan asam amino yang berperanuntuk active site dan kestabilan enzim tersebut. Hasil perkiraan kemudian diuji di laboratorium.Dengan demikian, akan lebih menghemat waktu dari pada analisa secara random.Setelah penemuan asam amino yang berperan sebagai active site dan untuk kestabilan enzim tersebut,kemudian dicari atau disintesa senyawa yang bisa berinteraksi dengan asam amino tersebut.Sebelumnya pencarian atau sintesa senyawa juga dilakukan secara random. Dengan data yangtersedia di PDB, bisa dilihat struktur 3D suatu enzim termasuk active site-nya, sehingga bisadiperkirakan bentuk senyawa yang akan berinteraksi dengan active site tersebut. Dengan demikian,kita cukup hanya mensintesa senyawa yang diperkirakan akan berinteraksi, sehingga obat terhadapsuatu penyakit akan jauh lebih cepat ditemukan dari pada mencari secara random. Cara inidinamakan “docking” dan telah banyak digunakan oleh perusahaan farmasi untuk penemuan obat baru.

Untuk enzim dari agent penyakit baru bisa dilakukan dengan homology modelingmenggunakanenzim yang sudah ada struktur 3D-nya sebagai referensi. Misalnya penemuan obat SARS. Sekarang tengah diusahakan mencari inhibitor enzim protease SARS. Karena virusnya juga baru, otomatis belum ada data 3D-nya di PDB. Tetapi karena data coronavirus sebelumnya tersedia di PDB, data ini digunakan untuk homology modeling protease dari virus SARS. Dari homology modelingdidapatkan struktur 3D proteinase dari virus SARS. Dari hasil analisa dockingdiperkirakan bahwa senyawa AG7088 bisa dijadikan leader compound (senyawa induk) untuk penemuan obat anti virus corona termasuk anti virus SARS.
Analisa docking dan homology modeling seperti ini memerlukan software yang harganya agak mahalsehingga hanya dimiliki oleh lembaga penelitian dan perusahaan farmasi. Diantara software tersebut adalah Insight II (Accelrys Inc.) dan The Molecular Operating Environment (MOE, Scalable Software), dua software yang banyak dipakai. Walaupun dengan sarana Bioinformatika bisa diperkirakan senyawa yang berinteraksi dan menekan fungsi suatu enzim, hasilnya harus dikonfirmasi melalui eksperiment di laboratorium. Namun dengan Bioinformatika, semua proses ini bisa dilakukan lebih cepat sehingga lebih efesien baik darisegi waktu maupun finansial.

Penerapan Bioinformatika di Indonesia

Sebagai kajian yang masih baru, Indonesia seharusnya berperan aktif dalammengembangkan Bioinformatika ini. Paling tidak, sebagai tempat tinggal lebih dari 300 suku bangsa yang berbeda akan menjadi sumber genom, karena besarnya variasi genetiknya. Belum lagi variasi species flora maupun fauna yang berlimpah. Memang ada sejumlah pakar yang telah mengikuti perkembangan Bioinformatika ini, misalnya para peneliti dalam Lembaga Biologi Molekul Eijkman. Mereka cukup berperan aktif dalam memanfaatkan kajian Bioinformatika. Bahkan, lembaga ini telah memberikan beberapa sumbangan cukup berarti, antara lain:


Deteksi Kelainan Janin
Lembaga Biologi Molekul Eijkman bekerja sama dengan Bagian Obstetri danGinekologi Fakultas Kedokteran Universitas Indonesia dan Rumah Sakit CiptoMangunkusumo sejak November 2001 mengembangkan klinik genetik untuk mendeteksi secara dini sejumlah penyakit genetik yang menimbulkan gangguan pertumbuhan fisik maupun retardasi mental seperti antara lain, talasemia dan sindroma down. Kelainan ini bisa diperiksa sejak janin masih berusia beberapa minggu. Talasemia adalah penyakit keturunan di mana tubuh kekurangan salah satu zatpembentuk hemoglobin (Hb) sehingga mengalami anemia berat dan perlu transfusi darah seumur hidup. Sedangkan sindroma down adalah kelebihan jumlah untaian di kromosom 21 sehingga anak tumbuh dengan retardasi mental, kelainan jantung, pendengaran dan penglihatan buruk, otot lemah serta kecenderungan menderita kanker sel darah putih (leukemia).

Dengan mengetahui sejak dini, pasangan yang hendak menikah, atau pasanganyang salah satunya membawa kelainan kromosom, atau pasangan yang mempunyai anak yang menderita kelainan kromosom, atau penderita kelainan kromosom yang sedang hamil, atau ibu yang hamil di usia tua bisa memeriksakan diri dan janin untuk memastikan apakah janin yang dikandung akan menderita kelainan kromosom atau tidak,sehingga mempunyai kesempatan untuk mempertimbangkan apakah kehamilan akan diteruskan atau tidak setelah mendapat konseling genetik tentang berbagai kemungkinan yang akan terjadi.

Di bidang talasemia, Eijkman telah memiliki katalog 20 mutasi yang mendasaritalasemia beta di Indonesia, 10 di antaranya sering terjadi. Lembaga ini juga mempunyai informasi cukup mengenai spektrum mutasi di berbagai suku bangsa yang sangat bervariasi. Talasemia merupakan penyakit genetik terbanyak di dunia termasuk di Indonesia.

Pengembangan Vaksin Hepatitis B Rekombinan
Lembaga Biologi Molekul Eijkman bekerja sama dengan PT Bio Farma (BUMNDepartemen Kesehatan yang memproduksi vaksin) sejak tahun 1999 mengembangkan vaksin Hepatitis B rekombinan, yaitu vaksin yang dibuat lewat rekayasa genetika. Selain itu Lembaga Eijkman juga bekerja sama dengan PT Diagnosia Dipobiotek untuk mengembangkan kit diagnostik.

Meringankan Kelumpuhan dengan Rekayasa RNA
Kasus kelumpuhan distrofi (Duchenne Muscular Dystrophy) yang menurun kinidapat dikurangi tingkat keparahannya dengan terapi gen. Kelumpuhan ini akibat ketidaknormalan gen distrofin pada kromosom X sehingga hanya diderita anak laki-laki. Diperkirakan satu dari 3.500 pria di dunia mengalami kelainan ini. Dengan memperbaiki susunan ekson atau bagian penyusun RNA gen tersebut pada hewan percobaan tikus, terbukti mengurangi tingkat kelumpuhan saat pertumbuhannya menjadi dewasa. Gen distrofin pada kasus kelumpuhan paling sering disebabkan oleh delesi atau hilangnya beberapa ekson pada gen tersebut. Normalnya pada gen atau DNA distrofin terdapat 78 ekson. Diperkirakan 65 persen pasien penderita DMD mengalami delesi dalam jumlah besar dalam gen distrofinnya. Kasus kelumpuhan ini dimulai pada otot prosima seperti pangkal paha dan betis. Dengan bertambahnya usia kelumpuhan akan meluas pada bagian otot lainnya hingga ke leher. Karena itu dalam kasus kelumpuhan yang berlanjut dapat berakibat kematian. Teknologi rekayasa RNA seperti proses penyambungan (slicing) ekson dalam satu rangkaian terbukti dapat mengoreksi mutasi DMD. Bila bagian ekson yang masih ada disambung atau disusun ulang, terjadi perubahan asam amino yang membentuk protein. Molekul RNA mampu mengenali molekul RNA lainnya dan melekat dengannya.

Sumber:

1 komentar:

berita terbaru mengatakan...

ayoo jayakan indonesiaku

Posting Komentar

Glitter Word GeneratorGlitter Word GeneratorGlitter Word GeneratorGlitter Word GeneratorGlitter Word GeneratorGlitter Word GeneratorGlitter Word GeneratorGlitter Word Generator